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ABSTRACT: This document contains additional information for the manuscript titled "The Ba-

sic Equations Under Weak Temperature Gradient Balance: Formulation, Scaling, and Types of

Convectively-coupled Motions"
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1. Using potential temperature instead of DSE to define WTG balance10

The thermodynamic equation in terms of potential temperature (𝜃) can be written as:11

𝐷𝐶𝑝𝜃

𝐷𝑡
=
𝑄

Π
(1)

where12

Π =

(
𝑝

𝑝𝑠

) 𝑅𝑑
𝐶𝑝

(2)

is the Exner function. The component of the circulation that obeys strict WTG balance using 𝜃 is13

written as:14

u𝑤 ·∇𝐶𝑝𝜃 ≡
𝑄

Π
(3)

and the non-WTG residual as15

𝜕𝜃

𝜕𝑡
+u′ ·∇𝜃 = 0. (4)

Conventionally, PV is defined using potential temperature. To keep the same units as the PV16

definition in the main text, we define the 𝜃-based PV by multiplying by 𝐶𝑝, yielding the following:17

PV = −𝑔𝜂𝜂𝜂𝑎 ·∇𝐶𝑝𝜃. (5)

The PV budget takes the following form:18

𝐷PV
𝐷𝑡

= −𝑔𝜂𝜂𝜂𝑎 ·∇
(
𝑄

Π

)
. (6)

Lastly, theWTGmoisture budget can be written using a 𝜃-based definition of theWTG circulation:19

𝜕𝐿𝑞

𝜕𝑡
= −(u′+u𝑟) ·∇𝐿𝑞−Πu𝑐 ·∇𝐶𝑝𝜃𝑒 −Π

𝜕𝐹𝑚

𝜕𝑝
. (7)
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where we have used the approximate form of the equivalent potential temperature (𝜃𝑒):20

𝐶𝑝𝜃𝑒 ≃ 𝐶𝑝𝜃 +
𝐿𝑞

Π
. (8)

Note that using 𝜃 instead of DSE to define the WTG thermodynamic and moisture equations leads21

to similar results, except the Exner function appears in several terms. This result implies that the22

DSE and 𝐶𝑝𝜃 are interchangeable in the lower troposphere, where Π ≃ 1, but their differences23

become larger in the upper troposphere. Generally, moisture fluctuations are small in this layer, so24

that the DSE budget can be used in place of 𝜃 to obtain a simpler moisture budget. However, the25

errors that arise from using DSE can be important if one is seeking high accuracy.26

2. The WTG approximation and the PV impermeability theorem27

To better understand how WTG balance and its departure affects the evolution of PV we invoke28

the impermeability theorem (Haynes and McIntyre 1990). Let us consider two concentric spheres29

that are made out of isentropic surfaces, neither which intersect the ground, as depicted in Fig. 1a30

in the main text. The average amount of PV that is found between these two isentropic surfaces is:31

{PV} = 1
A(𝑠2− 𝑠1)

∯
A

∫ 𝑠2

𝑠1

PV𝑑𝑠𝑑A (9)

whereA is the average area of Earth. We have assumed that the two isentropic layers have similar32

area because the depth of the troposphere is much smaller than the radius of Earth. Because the33

integral boundaries do not change with time, we can write the budget equation for {PV} as:34

𝜕{PV}
𝜕𝑡

=
1

A(𝑠2− 𝑠1)

∯
A

∫ 𝑠2

𝑠1

∇ ·J 𝑑𝑠𝑑A (10)

We now use the divergence theorem to evaluate the integrals in Eq. (13) along the two isentropic35

surfaces only:36 ∯
𝑎

∫ 𝑠2

𝑠1

PV𝑑𝑠𝑑A =

∯
𝑠1

(𝑠𝜂𝜂𝜂𝑎) ·n𝑑A+
∯

𝑠2

(𝑠𝜂𝜂𝜂𝑎) ·n𝑑A (11)
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where the subscript in each integral describes the isentropic surface that is being evaluated and n37

is a unit vector that is normal to these surfaces. Because the integrals on the rhs of Eq. (11) are38

evaluated along surfaces of constant 𝑠, it follows that we can take 𝑠 out of the integral:39 ∯
𝑠1

(𝑠𝜂𝜂𝜂𝑎) ·n𝑑A = 𝑠1

∯
𝑠1

𝜂𝜂𝜂𝑎 ·n𝑑A (12)

and the same is done for the surface 𝑠2. After doing this, we can once again invoke the divergence40

theorem but evaluating it along the volume that is encompassed by each individual isentropic41

surface, i.e.42 ∯
𝑠1

𝜂𝜂𝜂𝑎 ·n𝑑A =

∭
𝑉 (𝑠1)

∇ ·𝜂𝜂𝜂𝑎𝑑𝑉 = 0. (13)

Because the absolute vorticity vector is non-divergent by definition, it follows that the two volume43

integrals are zero. As a result {PV} = 0 and hence both sides of Eq. (10) must also be zero.44

When evaluating the rhs of Eq. (10), we see that the vector J𝑤 is always parallel to the isentropic45

surface and hence vanishes. Because the concentric spheres are assumed to be parallel to the46

Earth’s surface, we can evaluate the integral as follows:47 ∯
A

∫ 𝑠2

𝑠1

∇ ·J 𝑑𝑠𝑑A ≃
∯

𝑠2

𝜔′PV𝑑A−
∯

𝑠1

𝜔′PV𝑑A = 0 (14)

Thus, the non-WTG flow cannot flux of PV across the isentropic surfaces. It can, however, flux48

mass, as discussed by Haynes and McIntyre (1987, 1990). By moving the isentropic surfaces,49

PV can be concentrated locally, even though {PV} remains unchanged, as also discussed in Vallis50

(2017).51

3. Defining the gravity wave phase speed52

Our definition of the gravity wave phase speed can be obtained by considering the equations of53

motions (Eq. 4 in the main text) in a dry atmosphere when Ro𝜏 ≫ 1, which yields the following54

system of equations:55

𝜕v
𝜕𝑡

= −∇ℎΦ
′ (15a)

56

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
+ 𝜕𝜔

𝜕𝑝
= 0 (15b)
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57

𝜕

𝜕𝑡

(
𝜕Φ′

𝜕𝑝

)
= −𝜔𝜎 (15c)

where58

𝜎 =
𝑅𝑑𝑆𝑝

𝑝𝑐𝑝
(16)

can be thought of as a static stability parameter. Equation (15) can be combined to form the59

following :60

𝜕

𝜕𝑡

(
𝜕

𝜕𝑝

1
𝜎

𝜕

𝜕𝑝

)
Φ′ = −∇2ℎΦ

′. (17)

If 𝜎 is assumed to be constant, Eq. (17) simplifies to the wave equation for a wave with a vertical61

wavenumber 𝑚, and its solution corresponds to a gravity wave with a phase speed of 𝑐 =
√
𝜎/𝑚.62

This solution is identical to the gravity wave speed scaling used in Eq. (44) of the main text if P is63

assumed to correspond to 𝑚−1.64

4. Comparing the N𝑚𝑜𝑑𝑒 defined in this study with the definition of Adames et al. (2019)65

The definition of N𝑚𝑜𝑑𝑒 in Eq. (62) of the main text is very similar to the one found by Adames66

et al. (2019). In their shallow water model, N𝑚𝑜𝑑𝑒 = Fr2𝜏/[𝑁𝑐 (1− 𝑀̃)], where 𝑀̃ is the gross moist67

stability, and 𝑁𝑐 is the ratio between the convective moisture adjustment timescale (𝜏𝑐) and 𝜏.68

Interestingly, Adames et al. (2019) found that 𝑁𝑐 exhibits a near-constant value for motion systems69

with different spatial and temporal scales. We can show that this is indeed the case if we define70

𝜏𝑐 as the ratio between the convective heating scaling Q𝑐 and the moisture scaling 𝐿q, yielding71

𝜏𝑐 = 𝐿q/Q𝑐. Assuming that the two definitions of N𝑚𝑜𝑑𝑒 are equivalent, we can combine them to72

find that:73

𝜏𝑐 ∼ 𝜏(1− 𝛼̂) (18)

which shows that 𝜏𝑐/𝜏 is approximately constant if 𝛼̂ does not vary much in time and space. Close74

examination of Eq. (18) reveals that 𝜏𝑐 is longer for slowly evolving tropical motion systems. It is75

also shorter in more humid environments since stronger convection in these regions will dry the76

column more quickly.77
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5. Description of the simple vortex78

In order to construct the simple vortex shown in Fig. 6 of the main text, we assumed a gaussian79

geopotential distribution80

Φ′ = Φ0 exp
(
𝑏
[
(𝑥2 + 𝑦2

] )
(19)

whereΦ0 = 5m2 s−2, 𝑏 = 4×10−11m−2 is a constant that describes the decay rate of the geopotential.81

We assume that the vortex is in gradient wind balance, and thus can be diagnosed from the82

geopotential as follows:83

𝑉 ′ = − 𝑓 𝑟

2
+ 𝑟

2

(
𝑓 2−8𝑏Φ′

) 1
2 (20)

where 𝑟 =
√︁
𝑥2 + 𝑦2, and 𝑓 is the planetary vorticity whose value at 15◦N is the value we use at the84

center of the vortex. We can obtain 𝑢′ and 𝑣′ from 𝑉 ′ by going from polar coordinates to Cartesian85

coordinates:86

𝑢′ = −𝑉 ′ sin(𝜑) 𝑣′ =𝑉 ′cos(𝜑) (21)

where87

𝜑 = tan−1
𝑦

𝑥
(22)

Lastly, we also use a Gaussian for the distribution of 𝜒𝑤:88

𝜒𝑤 = 𝜒0 exp
(
𝑏
[
(𝑥− 𝑥0)2 + (𝑦− 𝑦̃0)2

] )
(23)

where 𝜒0 = 2.5×104 m2 s−1, 𝑥0 = −100 km and 𝑦0 = −50 km.89

Figure 1 shows the same distribution of terms as in Fig. 6 in the main text but for the case in90

which 𝑥0 = 𝑦0 = 0, that is, the convergence is co-located with the vorticity. While panels (c) and91

(d) are different from Fig. 6 in the main text only in their horizontal displacement, we see some92

differences in panels (b) and (e). Because the convergence is centered at the center of the vortex, v′93

does not contribute to the convergence of the divergence flux – it is driven purely by the component94

of the flow that is in exact WTG balance. Furthermore, because 𝜒 and 𝜓 have the same structure95

and are co-located, the term det(A) is zero. The sum of all the terms reveals a convergence tendency96

at the center of the vortex, flanked by a positive divergence tendency. The beta effect causes the97
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ring of divergence to exhibit an asymmetry, and we also see a weak positive convergence tendency98

to the west of the center of circulation.99
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Fig. 1. As in Fig. 6 in the main text except both 𝜁 and 𝛿𝑤 are centered at 𝑥 = 𝑦 = 0.

6. WTG equations with friction100

In the main text we simplified the basic equations and obtained the "WTG equations" for inviscid101

flow. Friction was not considered in order to avoid additional complications to the analysis and102

because finding scaling values for this term in the free troposphere can be challenging (see Kim103

and Zhang 2021). Nonetheless, it is useful to show how the WTG equations would look like if104

friction is included. In Eulerian form they are written as:105

𝜕𝜁

𝜕𝑡
= −∇ℎ · (v𝜁𝑎 −𝜔𝑤𝜂𝜂𝜂ℎ +k×F𝑟) (24a)

106

𝜕𝛿𝑤

𝜕𝑡
= −∇ℎ ·

(
v𝛿𝑤 +𝜔𝑤

𝜕v
𝜕𝑝

+F𝑟

)
−Σ (24b)

where F𝑟 is the frictional force, including the effects of turbulent processes. In Lagrangian form107

the equations can be written as:108

𝐷𝜁𝑎

𝐷𝑡
= 𝜂𝜂𝜂𝑎 ·∇𝜔𝑤 −∇ℎ · (k×F𝑟) (25a)

7



109

𝐷𝜔𝑤

𝐷𝑡
= {Σ} +2

{
𝜕u
𝜕𝑝

·∇𝜔𝑤

}
−∇ℎ ·F𝑟 (25b)
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