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Abstract
Purpose of Review Our understanding of the Madden-Julian Oscillation (MJO) and other tropical motion systems has
significantly improved in recent years. This article reviews the contribution of moisture mode theory to this progress.

Recent Findings Two realizations have contributed significantly to our understanding of the MJO: (1) Free tropospheric
water vapor plays an important role in the occurrence and organization of tropical deep convection. (2) The latent heat
released in convection is quickly transported around the tropics by gravity waves, the physical mechanism underpinning
the weak temperature gradient (WTG) approximation. Simple models of the tropics that include (1) and (2) revealed the
existence of moisture modes, waves in which water vapor plays a dominant role in their evolution. It was soon recognized
that the MJO exhibits properties of moisture modes. The ensuing development and application of the so-called moisture
mode theory of the MJO have led to the recognition that horizontal and vertical moisture advections are central to the
propagation of the MJO, and that cloud-radiative heating is at least partially responsible for its maintenance. Moisture mode
theory has also been applied to understand the MJO’s seasonality, Maritime Continent transit, and response to increasing
CO2. Recent work suggests that moisture mode theory can be extended beyond the MJO in order to explain the observed
diversity of tropical motion systems.

Summary A mounting body of evidence indicates that the MJO has properties of moisture modes. Extension of the theory
beyond the MJO may help us further understand the processes that drive large-scale tropical circulations.

Keywords Madden-Julian Oscillation · Convectively coupled waves · Moisture modes · Tropical convection

Introduction

Tropical atmospheric variability is characterized by a
multitude of atmospheric motion systems that are coupled
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to convection. At the day-to-day timescale, we observe
a myriad of convectively coupled equatorial waves akin
to the shallow water wave solutions found by Matsuno
[1, 2], as well as off-equatorial easterly waves [3]. At
the intraseasonal (week-to-week) timescale, precipitation
variability over the Indo-Pacific warm pool (60◦ E–180◦) is
largely the result of a phenomenon known as the Madden-
Julian Oscillation (MJO) [4]. As the MJO’s convective
signature propagates eastward over the Indo-Pacific warm
pool, its circulation can excite Rossby wave trains that
modulate weather around the globe [5, 6].

Since its discovery in the 1960s and 1970s [7–9], the
MJO has perplexed scientists. Its planetary-scale structure,
slow eastward propagation at ∼5 m s−1 over the warm pool,
and intraseasonal timescale were unlike any previously
documented wave. Studies that took place soon after the
MJO’s discovery acknowledged that deep convection played
a central role in its dynamics, yet no proposed framework
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explained all of the MJO’s key features [10]. Even after
decades of research, many global climate models (GCMs)
continue to struggle in simulating a realistic MJO [10–
12]. The challenge to understand the MJO has become
synonymous with a challenge to better understand the
processes in which the large-scale tropical circulation
couples to deep convection [13], being referred to as one of
the “holy grails” of tropical meteorology [14].

Despite its elusiveness, our understanding of the MJO
has progressed considerably in recent decades [15]. This
progress has been facilitated by the formalization of
the Weak Temperature Gradient (WTG) approximation
[16] and its application in the development of moisture
mode theory [17, 18]. The theory emphasizes the role
that free tropospheric water vapor plays in supporting
intraseasonal precipitation anomalies. It is now recognized
that convective parameterizations that are more sensitive
to free tropospheric water vapor lead to improved MJO
simulation [19]. The advection of moisture is critical to
the propagation of the MJO [20–23], and cloud-radiative
feedbacks play an important role in its maintenance [24–
27]. The insights of moisture mode theory have led to
more realistic MJO simulation and improved forecasts at
the seasonal-to-subseasonal scale [28–31]. Moisture mode
theory also provides clues about the nature of large-scale
tropical atmospheric motions: how several key parameters
could be used to understand the diversity of convectively
coupled tropical waves and how the tropical circulation will
respond to increasing CO2 [32–34].

In this article, we review some of the salient features
of the MJO and introduce the foundations of moisture
mode theory. We will discuss how the theory has advanced
our understanding of the MJO, explaining features such
as eastward propagation, growth and maintenance, and
seasonality. We will elucidate how tropical atmospheric

dynamics allows for the emergence of moisture modes, and
how they differ from other types of convectively coupled
waves. We will synthesize the theory and its potential
applications to other tropical motion systems. Finally, we
will also discuss shortcomings of the theory, unanswered
questions, competing views, and how future work may be
able to address these issues.

A Short Review on MJO Structure
and Teleconnections

The initial depiction of the MJO by Madden and Julian
[4] showed an overturning circulation in the equatorial
plane. The rising branch is coupled with enhanced deep
convection, while the subsiding branch is associated with
suppressed convection. Subsequent studies revealed that the
horizontal structure of the MJO also exhibits significant
meridional winds associated with Rossby waves [35, 36].
The lower tropospheric structure is reminiscent of the wave
response to a stationary equatorially symmetric heat source
[1, 37]. The structure, shown in Fig. 1b, consists of a pair
of Rossby wave cyclones to the west of the maximum
heating and Kelvin wave easterlies to the east. Regions of
anomalous cooling exhibit the same aforementioned wave
response structure, but of the opposite polarity.

In the upper troposphere Kelvin and Rossby waves,
responses are still observed, but exhibit a reversed
polarity from the lower troposphere (Fig. 1a). The upper
tropospheric Rossby waves also differ from the lower
tropospheric waves in their horizontal structure. Unlike the
lower tropospheric cyclones, which are centered 10–15◦
from the equator, upper tropospheric Rossby waves are
centered near the equatorward edges of the subtropical jet
streams ∼ 28◦ N/S [38]. Furthermore, these waves exhibit a
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Fig. 1 a Outgoing longwave radiation (OLR, shading), 150 hPa
geopotential height anomalies (contours) and 150 hPa horizontal winds
(arrows) for the time when the MJO is active over the Maritime Conti-
nent (MJO phase 5). b Precipitation (shaded) and 850 hPa geopotential
height (contours) and horizontal winds for the same MJO phase. The

contour interval is 2 m for (a) and 1 m for (b). The maps are linear
regressions based on the first OLR-based MJO index (OMI1, Kiladis
et al. 2014). c 300 hPa geopotential height anomalies corresponding to
the MJO phase shown in panels (a) and (b). Contour interval is 2.5 m
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larger zonal extent than the lower tropospheric counterparts,
with each cyclonic anomaly extending ∼5000 km. The
lower tropospheric Rossby waves are maintained by vortex
stretching from the convection and planetary vorticity
advection, a balance that is reminiscent of Sverdrup balance
[37]. In the upper troposphere, the advection of vorticity
imparted by the subtropical jet streams also plays an
important role in the vorticity budget of the Rossby waves
[39].

The aforementioned reversal of polarity between the
upper and lower tropospheric wind and geopotential fields is
often referred to as a “first baroclinic mode” [40]. Through
mass continuity, this structure is related to a vertical velocity
field with a single polarity that reaches a maximum in the
midtroposphere (∼400 hPa), akin to the heating profiles
seen in tropical deep convection [41]. Vertical velocity
profiles consistent with shallow and stratiform convection
are also observed during the MJO cycle [42]. However, the
role that these vertical velocity profiles play in the MJO
cycle remains a topic of active research [10].

The upper tropospheric divergence and divergent wind
fields associated with the MJO interact with the North
Pacific jet stream to force a Rossby wave teleconnection
to higher latitudes [43]. The teleconnection resembles the
Pacific-North America pattern (Fig. 1c), and is most effi-
ciently forced when MJO heating has a dipole-like structure
with opposite-signed anomalies in the Indian and West
Pacific Oceans [44, 45]. Geopotential height and associ-
ated flow perturbations produced by this teleconnection
have been shown to modulate extratropical temperatures,
precipitation, atmospheric river activity, blocking, severe
weather, and the North Atlantic Oscillation, among other
features [6, 46–51]. The precise nature of the MJO tele-
connection and its impacts varies as MJO characteristics
and the North Pacific basic state change with ENSO and
the QBO [52–54].

Role of Water Vapor in Tropical Convection
and the Weak Temperature Gradient
Approximation

Tropical rainfall is largely the result of cumulonimbus
clouds whose updrafts are initiated from acceleration
due to positive buoyancy (see Johnson et al. [55] and
references therein). It was hypothesized that the processes
that create a favorable environment for updrafts may
explain the coupling between the MJO-related precipitation
anomalies and the planetary-scale circulation. In parcel
theory, the buoyancy of rising parcels is determined by the
environmental static stability and the moist static energy
(MSE) (or equivalent potential temperature) of the subcloud
layer [56, 57].

However, studies showed that tropical deep convection
is also sensitive to the concentration of water vapor
above the planetary boundary layer [58–60]. Two physical
processes are thought to explain the coupling between free
tropospheric water vapor and precipitation. First, rising
cumulus clouds in the tropics tend to lose buoyancy as
they entrain air from the surrounding environment, and dry
environments are more effective at diluting the updraft than
moist environments [61–63]. Another explanation is based
on the observation that MSE tends to remain fixed within the
tropical boundary layer, which forms the basis of a concept
known as boundary-layer quasi-equilibrium (BLQE) [64,
65]. In precipitating regions, convective downdrafts import
low MSE air from the free troposphere, balancing the
MSE gain from surface fluxes. The MSE that downdrafts
import is higher if the free troposphere is more humid,
so more convection is required to create the downdrafts
necessary to maintain BLQE [66]. The processes that lead to
BLQE are not dependent on entrainment and detrainment of
clouds above the boundary layer. However, it is nonetheless
possible that the two explanations for the water vapor-
precipitation relation may be physically related: less diluted
updrafts in a humid-free troposphere create the larger
amount of convection that is needed to maintain BLQE.

Observations and idealized simulations of tropical deep
convection showed that temperatures within the clouds are
similar to those of the surrounding environment [67, 68].
The near homogeneous horizontal temperature distribution
suggested that the latent heating within the clouds is
balanced by updraft-driven adiabatic cooling. This balance
can be extended to any kind of diabatic heating so that the
leading thermodynamic balance of the tropics can be written
as

ω
∂s

∂p
≈ Q (1)

where ω is the pressure velocity, s is the dry static energy,
and Q is the diabatic heating rate. This thermodynamic
balance, known as the Weak Temperature Gradient (WTG)
approximation [16], has been extensively used to understand
tropical atmospheric motions [69–71].

WTG balance is achieved in the troposphere through
an adjustment process in which internal gravity waves
redistribute the energy of latent heating in convection
throughout the tropics [67, 72, 73]. The energy is distributed
through a large area because the Coriolis force is weak and
adjustment to geostrophic balance is therefore slow (i.e.,
the Rossby radius of deformation is large). An example of
how a two-dimensional troposphere adjusts to WTG balance
is shown in Fig. 2. It shows the response to anomalous
tropospheric heat/cooling in a vertically truncated version
of the equations discussed by [73]. Further details about the
model are shown in the Supplementary Material.
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Fig. 2 Anomalous tropospheric response to (left) a horizontal
monopole heat source and (right) a horizontal dipole in heating/cooling
after (a) t=5 min after the heating/cooling is turned on, b t = 30 min,
and (c) t= 1.5 h. The blue line shows the mid-tropospheric temperature

anomalies while the red line shows the vertical velocity anomalies. The
thick pink line shows the vertical velocity that would balance the heat
source exactly. The solutions shown are obtained following Nicholls et
al. [73]

Within minutes of turning on an anomalous heat source,
an overturning circulation develops consisting of rising
air near the center of the heating flanked by regions of
subsidence. This circulation is composed of a convectively
driven ascent, and a front of adiabatic subsidence driven by
gravity waves. While the ascent remains fixed to the heat
source, the gravity waves propagate away from the region of
heating, warming it through adiabatic compression. Thirty
minutes after the heat source is turned on, the region of
ascent approximately satisfies WTG balance, while the
subsidence front has propagated approximately 90 km
from the center of heating. After 1.5 h, the waves have
propagated far away enough that the convectively driven
ascent and the diabatic heating are in balance over the
whole region, satisfying (1). It is important to note that
for a horizontal monopole of heating the balanced state
results in a change in the domain-mean temperature while
for a horizontal dipole of anomalous heating and cooling
the temperature anomalies are completely eliminated (right
column of Fig. 2). The adjustment towards WTG balance
is more complicated in a three-dimensional atmosphere and
with the addition of the Coriolis force [67, 72]. Nonetheless,
Fig. 2 is still useful in helping us understand why the free-
tropospheric temperature distribution in the tropics is so
uniform.

The results of Fig. 2 reveal that the timescale in
which a given region of the atmosphere adjusts towards
WTG balance (τWT G) is determined by the ratio between
the propagation speed of gravity waves (c) and the
region’s horizontal scale L, so that τWT G = L/c.
For c = 50 m/s and L = 300 km, the parameters
that correspond to Fig. 3, τWT G is roughly 1.6 h. The
timescale τWT G can be on the order of minutes for
mesoscale convection to days in the case of planetary-
scale circulations [32, 74, 75]. It is also shorter for first
baroclinic modes than higher order modes since the gravity
wave speed decreases with decreasing vertical wavelength
[72, 74]. The application of τWT G gives us a qualitative
picture of the motion systems that are approximately
in WTG balance. These are systems whose timescales
much longer than the WTG adjustment time scale [32],
such as slowly propagating synoptic-scale systems and the
MJO [76].

The tendency of the tropical troposphere to adjust to
WTG balance has important implications on how the large-
scale circulation couples to convection. If free-tropospheric
temperature anomalies are smoothed quickly, and the
boundary layer MSE remains approximately fixed [77, 78],
then changes in free tropospheric water vapor become a
primary cause of changes in the occurrence and organization
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Fig. 3 Normalized contribution
of the column-integrated
right-hand side terms in Eq. 3 to
the (left) propagation and (right)
maintenance of the MJO in
ERA-Interim data. The vertical
MSE advection by convection
was calculated as a residual
from Eq. 3. The plot is obtained
following the method outlined
by Andersen and Kuang [95]
and averaged over 20◦N/S and
60–210◦ of longitude

of deep convection. This feature results in the existence of
waves known as moisture modes.

Moisture Mode Theory of the MJO

The term moisture mode was originally coined in the
theoretical work of Yu and Neelin [79] to a group of wave
solutions they obtained in which water vapor played a
dominant role in their dynamics. In these waves, enhanced
precipitation is spatially colocated with positive column-
integrated moisture anomalies, and the evolution of the
moisture field governs the evolution of the wave. The
moisture modes documented by Yu and Neelin were
synoptic scale waves (∼1000 km across) that were not
associated with the MJO. However, the observed MJO
exhibits many of the features of moisture modes. It exhibits
a strong signature in column-integrated water vapor [80, 81]
that is nearly in phase with the intraseasonal precipitation
anomalies [26]. This coherence between water vapor and
precipitation is observed in other convectively coupled
waves, but it is largest at the intraseasonal timescale
[82, 83]. Furthermore, a toy model in which convection
was made highly sensitive to water vapor exhibited
variability reminiscent to the MJO [14]. Sensitivity of
convection to free tropospheric water vapor was not a
feature in most of the convective parameterizations included
in GCMs at the time, and these models were largely
unable to simulate a realistic MJO [11, 84]. All these
observational, modeling, and theoretical studies suggested
that water vapor was central to the evolution of the MJO,
forming the foundations of the modern moisture mode
theory [17, 18].

In moisture mode theory, the processes that lead to
the maintenance and propagation of the intraseasonal
precipitation anomalies can be understood by invoking the
moisture budget. Averaged over a horizontal domain of

roughly 1◦ × 1◦, the budget can be written in isobaric
coordinates as:

∂q

∂t
= −v · ∇q − ω

∂q

∂p
− Q2

L
(2)

where the overline denotes a horizontal average, q is the
specific humidity, v is the horizontal wind vector, ω is the
pressure velocity, and Q2 is the apparent moisture sink
[85]. The processes on the right-hand side are the horizontal
advection of moisture, vertical advection of moisture, and
the sources and sinks of moisture (Q2). The term Q2

includes moistening/drying from subgrid-scale eddies and
microphysical processes such as condensation, evaporation,
deposition, and sublimation, mathematically expressed as
Q2 = L∂pω′q ′ + L(c − e + d − s). The variable Q2 was
first defined by Yanai et al. [85] and the notation has been in
widespread use since. Equation (2) is commonly used since
the horizontal domain can correspond to a GCM grid point,
and parameterized processes such as cloud microphysics
and deep convection are incorporated into Q2.

In precipitating regions, the last two terms on the right-
hand side of Eq. 2 are nearly an order of magnitude larger
than the others [86, 87]. Furthermore, these two terms
are physically related and roughly cancel one another:
vertical moisture advection is dominated by the vertical
transport of moisture in convection and Q2 is dominated
by the condensation of water vapor in convective clouds.
Additionally, the contribution of radiative heating to the
evolution of moisture is implicit and difficult to quantify
in Eq. 2. The application of the WTG approximation can
be used to replace the last two terms in Eq. 2 by a series
of terms that summarize the impact that thermodynamic
processes have in the evolution of moisture [88]. This
substitution is done by first defining the diabatic heating
rate Q as the sum of latent heat release [L(c − e + d − s)],
radiative heating (QR), and the turbulent flux convergence
of sensible heat by subgrid-scale eddies (∂pω′s′). We then
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apply the WTG approximation (1) by defining a vertical
velocity that balances the latent heat release (ωc) and the
radiative heating (ωr ). With these definitions, Eq. 2 can be
rewritten as:

∂Lq

∂t
= −v · ∇Lq − ωc

∂h

∂p
− ωr

∂Lq

∂p
− ∂ω′h′

∂p
(3)

where h is the MSE (the sum of enthalpy, potential energy,
and latent energy), and we have dropped the overlines from
all the terms except the eddy covariance term. The terms in
Eq. 3 that are not in Eq. 2 are the vertical advection of MSE
by convection—the residual between the loss of water vapor
due to latent heating and the gain of moisture from vertical
moisture advection driven by convective heating—vertical
moisture advection by radiative heating and the vertical
eddy flux divergence of MSE. The application of the WTG
approximation replaces the last two terms in Eq. 2, which
are large and tend to cancel, with terms that are comparable
in magnitude to the moisture tendency [89]. It also provides
a more in-depth explanation of the processes that lead to
the evolution of water vapor. For example, it shows that
radiative heating can moisten the free troposphere through
vertical moisture advection. It also describes the impact
of convection in a single term. Equation (3) can also be
modified to include the role of dry adiabatic lifting by using
a “relaxed” WTG approximation instead of the conventional
definition in Eq. 1 [89].

Equation 3 is reminiscent of the MSE budget, which
is also often employed to study the MJO [22, 90, 91].
Unlike MSE budgets, which are easiest to understand when
column-integrated, Eq. 3 can provide a lucid picture of the
processes that lead to the evolution of moisture without
resorting to column integration [88, 92–94].

Application of Eq. 3 and the MSE budget to observed
and simulated MJO events have revealed the importance of
anomalous cloud-radiative heating in the maintenance of the
intraseasonal precipitation anomalies (Fig. 3). Mechanism-
denial experiments show that when cloud-radiative heating
is turned off, MJO-like activity is weakened [25, 95–99]. In
addition to radiative heating, surface latent heat fluxes also
play a role in MJO maintenance, although this contribution
depends on the phase of the MJO [20, 91, 100]. During the
early stages of MJO formation, anomalous easterlies over
the Indian Ocean weaken the surface westerlies, suppressing
surface latent heat fluxes. As the MJO amplifies over the
Indian Ocean, anomalous surface westerlies develop near
the convectively active region, which increase the surface
latent heat fluxes [101].

When considering the processes that govern the eastward
propagation of the MJO, observations and modeling studies
suggest that horizontal moisture advection is of primary
importance (Fig. 3) [20, 22, 88, 91, 92]. Vertical advection
of moisture driven by convection is also important (Fig. 3).

GCM studies show that enhancing the magnitude of
horizontal moisture advection results in more robust MJO
eastward propagation [23, 102]. Vertical moisture advection
is particularly important for the propagation of the MJO
from the Maritime Continent to the Western Pacific [87,
103].

The strength of both horizontal and vertical moisture
advection is dependent on the magnitude of the moisture
gradients, which is controlled by the background concentra-
tion of water vapor in the warm pool. Analysis of different
GCMs shows that the models that exhibit the strongest MJO
activity tend to exhibit more humid mean states [104–106].
Similarly, forecast models exhibit weakening MJO activity
after initialization partly because the models tend to exces-
sively dry the troposphere after they are initialized [31,
107–109]. Models with active MJOs may also feed back
onto the mean moisture distribution, and so further model
sensitivity tests are needed to better constrain the nature of
such interactions.

During boreal winter, the eastward propagation of the
MJO is interrupted by the islands of the Maritime Continent.
This interruption can lead to the termination of roughly
half of MJO events, which has become known as the
“Maritime Continent barrier effect” [110]. MJO events that
reach the west Pacific tend to “detour” to the south of the
Maritime Continent, propagating to the south of Indonesia
and through the Timor Sea [111]. Recent studies have
shown that the climatological-mean moisture gradients in
the Maritime Continent are critical to the propagation past
these islands [29, 105].

Multiple studies have shown that the amplitude and
propagation characteristics of the MJO improve when
GCMs include ocean coupled processes [112]. While the
physical pathway for the improved simulation remains a
topic of active research, a recent study suggests that coupled
models exhibit mean states with steeper horizontal moisture
gradients that favor enhanced MJO propagation [106],
consistent with moisture mode theory.

When the South Asian monsoon is active during boreal
summer, the intraseasonal precipitation anomalies tend
to propagate northeast towards the Bay of Bengal [113,
114]. This behavior is sufficiently different from the
boreal winter MJO that numerous studies refer to this
phenomenon as the boreal summer intraseasonal oscillation
(BSISO) [115]. Moisture mode theory has been applied
to understand the BSISO’s propagation and has found
that the monsoonal mean state is of critical importance.
When the monsoon is active, the largest concentration of
moisture is centered over the Bay of Bengal, resulting
in a northeastward moisture gradient over much of the
Indian Ocean. This distribution of water vapor causes the
BSISO-related horizontal winds to advect moisture in a
way that northeast propagation of the anomalous convection
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occurs [116, 117]. The northeast propagation is enhanced
by the advection of BSISO-related moisture by the monsoon
low-level westerly jet [118, 119]. During boreal summer,
the eastward-propagating MJO also produces a secondary
convective center in the tropical northeast Pacific Ocean
due to remote teleconnections through the Pacific equatorial
waveguide [120].

Another important quantity used in the study of moisture
modes is the so-called normalized gross moist stability
(NGMS) [121, 122]. The name NGMS is a misnomer.
It is not a lapse rate as the conventional definitions of
stability, but a measure of the amount of column-integrated
MSE exported by a region of convection [10]. Thus, the
NGMS is not a true measure of stability, but a diagnostic
quantity of the impact convection has on the thermodynamic
environment. Another quantity, called the effective NGMS,
includes the impact of radiative heating and surface fluxes
in the export of MSE. Both the NGMS and effective NGMS
are useful in analytical models of tropical motion systems
since they act as proxies of the column-averaged moist
static stability [18, 33]. Theoretical studies have shown that
moisture modes grow when the effective NGMS is negative,
i.e., when there is a net import of MSE into precipitating
regions [17, 18, 71, 123].

In observations and reanalysis, the conventional NGMS
tends to be slightly positive when the MJO is active [91,
124–126]. The effective NGMS, however, tends to be
near zero or negative in observations and in models that
exhibit strong MJO activity [126–131]. That the effective
NGMS is negative while the conventional one is positive
is due to cloud-radiative heating. Trapping of outgoing
longwave radiation by upper tropospheric clouds causes
anomalous heating throughout the troposphere that exceeds
the reduction in shortwave radiative heating. This net
cloud-radiative heating reduces the net export of MSE
in the convective region and supports the convection by
maintaining the troposphere humid, as indicated by Eq. 3.

Moisture mode theory has also been applied to under-
stand the MJO’s planetary scale. Different views exist on
the key mechanism. One view suggests that cloud-radiative
feedbacks are strongest at the planetary scale, leading to
planetary-scale moisture modes [71]. Another view posits
that the NGMS is smallest at the planetary scale [132].
Other views suggest that an instability exists between
the large-scale circulation and wind-induced surface heat
exchange [133], or frictional convergence [134], leading
to preferential growth at the planetary scale. There is yet
another view that suggests the MJO’s scale is planetary
because moisture is diffused more easily at smaller scales
[18, 135]. While these physical mechanisms are different,
they agree in that interactions between water vapor and con-
vection play a key role in the planetary-scale selection of the
MJO.

Moisture mode theory has also been used to understand
the response of the MJO to climate change (see Maloney
et al. [34] for a thorough discussion). An increased vertical
moisture gradient with warming, partially counteracted by
weaker radiative feedbacks and decreased vertical velocity
per unit diabatic heating, makes vertical moisture advection
more efficient and leads to increased MJO precipitation
amplitude with warming in most models [136]. Stronger
vertical and horizontal advective moistening to the east
of MJO convection with warming have been cited as
possible reasons for faster model MJO propagation speed
[100, 137]. Finally, moisture mode theory, particularly the
assumption of WTG underlying it, predicts that the MJO-
related circulation will amplify more slowly than the the
precipitation anomalies, and possibly even weaken with
warming [138], which already has some support in the
observed record [139].

A warming climate is also expected to produce poten-
tially complex changes to the strength of MJO circulations
and North Pacific basic state that lend uncertainty to how the
MJO teleconnection may change in the future [136]. Recent
modeling evidence suggests possible increasing impacts of
MJO teleconnections on the U.S. West Coast associated
with an eastward extension of the subtropical jet and MJO
teleconnection [140].

Differences Between Moisture Modes
and Other Convectively Coupled Waves

Up to this moment, we have discussed the moisture mode
framework and its application to the MJO. But why do
moisture modes exist? How are these motion systems
different from other equatorial waves? The answer to
these questions reveals important details about convective
coupling in the tropics and the mechanisms that lead to a
diversity of convectively coupled tropical motion systems.

Simplified models of tropical rainfall indicate that there
are two processes that occur in response to the onset
of deep convection. One is the gravity wave response to
the latent heating/cooling, which adjusts the troposphere
towards WTG balance (Fig. 2). The other is the drying of
the troposphere through condensation and rainfall. Simple
models of tropical motion systems reveal that the timescale
in which convection dries the tropospheric column (τD) is
inversely proportional to the absolute value of the effective
NGMS. As mentioned in the previous section, in simple
models, the NGMS can be thought of as an effective static
stability, or as an “equivalent” shallow water depth. The two
adjustment processes, one driven by convective adjustment
(τD) and another by its gravity wave response (τWT G),
may explain much of the diversity in convectively coupled
equatorial waves and other tropical motions systems.
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Analysis of moist shallow water basic equations in
the equatorial belt reveals two regimes of equatorially
trapped waves that are defined by τD and τWT G [32,
33] (Fig. 4). If τD � τWT G, convection dries the
troposphere before gravity waves are able to redistribute
the energy from the convection, failing to completely
homogenize the horizontal distribution of temperature (i.e.,
the process shown in Fig. 2 is not completed). Decoupled
from convection, the gravity waves can now propagate
freely, and the temperature anomalies associated with
these waves can induce convection by modulating the
CAPE and CIN of the region they propagate into. These
convectively coupled gravity waves could have significant
moisture anomalies, but they are much smaller than those
observed in moisture modes [33]. These waves may grow
from a “stratiform instability” that results from feedbacks
between the temperature anomalies and convection [141].
An analogous instability that also involves water vapor
fluctuations, known as moisture-stratiform instability, may
also explain the growth of these waves [142].

If τD � τWT G, the temperature field is smoothed and
the thermodynamics of waves in this regime are governed
by moisture, i.e., the resulting waves are moisture modes.
At the planetary scale, the existence of moisture modes is
contingent on an effective NGMS that is close to 0 [33].
That studies have found that the effective NGMS close
to 0 or slightly negative during the MJO cycle does not
definitively mean that the MJO is a moisture mode, but it
does indicate that moisture mode theory may at least explain
some of its features.

In addition to the effective NGMS, the ratio τWT G/τD is
also determined by the wave’s horizontal scale, with larger
scale waves more likely to be gravity waves than moisture
modes. It is also dependent on the vertical profile of vertical

velocity in these systems, since the phase speed of free
gravity waves (c) decreases as the vertical wavenumber of
vertical velocity increases, i.e., c is smaller for shallow and
stratiform profiles of ascent than in deep convective ones
[2]. While observations currently do not support the notion
that larger scale waves are more likely to be gravity waves,
there is some evidence supporting the role of the vertical
profile of ascent. Shallow and stratiform ascent appears
to play an important role in the tilted structure of ascent
of inertio-gravity, Kelvin and mixed Rossby-gravity waves
[82, 126]. Vertical velocities in the MJO and equatorial
Rossby waves are predominantly explained by a single
profile of vertical velocity that is slightly more elevated
from that of deep convective ascent, which also favors
a reduced NGMS from enhanced cloud-radiative heating
[126].

A recent study by Benedict et al. [99] showed some evidence
of the moisture mode and gravity wave regimes in the Com-
munity Earth System Model. When cloud-radiative feed-
backs were turned off in the model, they found a reduction in
the spectral amplitude of the MJO, while Kelvin and inertio-
gravity waves exhibited an increase in amplitude. The elim-
ination of cloud-radiative feedbacks eliminated the import
of moisture that results from said process (3), resulting
in a larger effective NGMS. In the absence of moistening
from cloud-radiative heating, the drying timescale τD

becomes shorter, favoring the existence of gravity waves
and suppressing the existence of moisture modes.

Synthesis and Future Research Directions

The results of multiple modeling, observational, and
theoretical studies have led to an emerging consensus

Fig. 4 Schematic description of how the WTG and QE
adjustment processes can lead to diversity in convectively cou-
pled waves. (a) If the WTG adjustment timescale (τWT G) is
much longer than the QE adjustment timescale (τD), convec-
tion shuts down before the temperature anomalies are fully
eliminated by gravity waves. The gravity waves can then prop-
agate and modulate the temperature of the troposphere via

adiabatic lifting. Such lifting can reduce convective inhibition (CIN)
and induce subsequent convection. (b) If τWT G � τD , the temper-
ature anomalies are completely eliminated and the evolution of the
convection in the resulting wave is determined by the distribution of
water vapor. These waves are referred to as moisture modes
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that the MJO exhibits properties of a moisture mode. In spite
of its success in explaining the MJO’s features, some unan-
swered questions remain, and the theory has not been extended
to explain other tropical motion systems. Furthermore, other
competing views of the MJO also exist. We conclude this
article by highlighting the unresolved questions and com-
peting views, and offering future research directions.

Moisture Modes as an Integral Part of the Spectrum
of Convectively Coupled Waves

The discussion in the previous section focused on two
limits: one which leads to moisture modes and one which
leads to gravity waves. When τWT G ∼ τD , waves with
an intermediate behavior between Matsuno’s equatorial
wave solutions and moisture modes are possible [32, 33].
The existence of these “mixed” systems would complete a
spectrum of waves that can be observed in the tropics.

The idea that waves exist in a spectrum in the tropics
is not new. Roundy [144–147] suggested that the MJO
and convectively coupled Kelvin waves are not distinct
phenomena. Instead, he suggested that they comprise the
edges of a continuum, with waves with an intermediate
structure existing between the spectral peaks of the MJO
and Kelvin waves [144, 146]. When considered as a
spectrum, the amplitude of the water vapor anomalies in
these waves increases as their phase speed decreases [146],
consistent with the moisture mode–gravity wave spectrum
hypothesized by Adames et al. [32]. The continuum
in which gravity waves and moisture modes exist is
described in Fig. 5. Dry gravity waves and moisture
modes are the waves that are found in the top-left and
bottom-right vertices, with waves that exhibit intermediate
characteristics—“mixed moisture-gravity waves”—existing
in between.

While a spectrum connecting moisture modes and gravity
waves has been suggested, it would still not fully explain the
observed diversity of tropical motion systems. Equatorial
Rossby waves are part of the same family of waves as
inertio-gravity waves and mixed Rossby gravity waves, but
the former evolve more slowly than the latter. Theoretical
considerations of slowly evolving waves suggest that
moisture modes and dry Rossby waves also exist in a
continuum, forming the bottom of the triangle in Fig. 5
[33, 143]. Moisture modes are observed in a humid
atmosphere where the effective NGMS is small, and hence
τD is large. While the ratio τWT G/τWT G does not depend
on the frequency of the wave, another number that can
also describe the moisture mode-gravity wave spectrum
shows that moisture modes are inherently low-frequency
phenomena, as in Rossby waves [32]. Indeed, dry gravity
waves are the fastest waves that can be observed in the
tropics, and hence why Fig. 5 is shaped as a triangle.

Fig. 5 Schematic description of the hypothetical spectrum of tropical
motion systems obtained by synthesizing recent theoretical work on
convectively coupled tropical waves [32, 33, 143]. At the vertices of
the pyramid are the gravity waves, Rossby waves, and moisture modes.
Between the vertices are modes which exhibit mixed behavior. Dry
waves are in the left of the triangle, and waves become increasingly
more humid from left to right The characteristics of each wave can
be explained by their frequency and by the relative magnitude of the
gravity wave adjustment timescale to the drying timescale (the latter
is also inversely proportional to the effective NGMS). The triangle
shape is due to dry gravity waves being the highest frequency large-
scale waves possible. All moist waves are considerably slower than dry
gravity waves

Moist waves with structures reminiscent of Rossby
waves are also observed in the tropics, and it is possible
that the evolution of water vapor plays a key role in these
systems. Recent studies have hypothesized that monsoon
low pressure systems may grow from an interaction between
water vapor and circulation known as “moisture-vortex
instability” [143, 148], or a mechanism known as “moist
batropic instability” [149]. Recent work also suggests that
African easterly waves may grow through a mechanism
referred to as “rotational stratiform instability” [150]. These
instabilities are rooted in the evolution of water vapor and
convection in these systems, and they would not exist if
water vapor were not a prognostic variable. Recent work
shows that including prognostic moisture into a model that
qualitatively represents the South Asian and West African
monsoons causes the aforementioned instabilities to be the
primary mechanism of growth, while weakening baroclinic
instability, a process in which prognostic moisture is not
necessary [89]. Thus, easterly waves and monsoon low
pressure systems may be disturbances that exhibit an
intermediate behavior between moisture modes and Rossby
and Rossby-gravity waves. East Pacific easterly waves
and some moist equatorial Rossby waves may also be
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mixed modes, since moisture explains the majority of their
variance in rainfall [151–153]. These studies provide hints
that moisture mode theory can be applied or be combined
with other ideas to explain tropical phenomena.

Unanswered Questions and Other Views

There are numerous questions about the MJO that moisture
mode theory has been unable to explain, or has yet to
be applied. Among the most salient is the relationship
between the MJO and the QBO [154]. Questions also
remain on the processes that lead to MJO initiation
and Maritime Continent transit, as well as planetary-
scale selection [10, 15]. The precise balance of processes
typically associated with MJO propagation (e.g., horizontal
vs. vertical advection) has been shown to vary across
models and different observational datasets, providing a
challenge to the robustness of some of the findings of
moisture mode theory [20, 155–157]. The role of surface
flux feedbacks to MJO maintenance is also unclear, and
may be location-dependent. Models and reanalyses even
differ on the sign of the flux feedback (e.g., Figure 3,
[157, 158]). How the MJO will change in a future warmer
climate is also uncertain among models. A subset of climate
models indicate weaker MJO precipitation variability in a
warmer climate, even in the presence of a moister tropical
mean lower tropospheric basic state that would predict MJO
amplification through moisture mode theory [15, 34]. The
pattern of SST change appears to be an important regulator
of future MJO variability in such models [159]. Moisture
mode theory might still explain this result, although in
a different way than through simple arguments about the
lower tropospheric moisture gradient.

It is important to note that moisture mode theory is not
universally accepted. Several other views exist [10, 15].
Existing MJO theories can be categorized into two groups.
One is a group posits that water vapor is prognostic and
plays a prominent role in the MJO. This group includes
different variants of moisture mode theory, which differ on
the prominence that different moist processes play in the
MJO [71, 133]. There are other views within this group
that are not variants of moisture mode theory, but contain
elements of the theory [98, 134, 135]. They also include
prognostic water vapor, but emphasize other processes
such as multiscale interactions [160]. A second group of
theories exists where the role of water vapor is either
secondary or nonexistent. This group includes two theories
that are rooted in dry dynamics: one based on nonlinear
Rossby wave dynamics [161], and one based on a linear
Kelvin wave with momentum damping [162]. Another
framework posits that the MJO is an interference pattern
between eastward and westward propagating inertia-gravity
waves [163].

The current diversity in MJO theories is a sign that more
work is needed to understand its underlying mechanisms.
Recent review papers provide several recommendations to
evaluate these theories [10], and provide clues on how to
elaborate on the theories based on recent observations and
modeling results [15]. It is possible that an accepted theory
of the MJO will have a combination of elements from
moisture mode theory and other views.
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