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Announcements 

HW5 and PA5 are due next Tuesday. 


Guidelines to your final presentation are now on Canvas.


Final lectures are this week. 
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It is convenient to write the TC’s 
tangential circulation in terms of 
“absolute angular momentum”





So that the thermal wind equation 
becomes:


M = vr +
1
2

fr2

∂M2

∂p
= −

Rdr3

p
∂T
∂r

Houze (2014)

Gradient Balance
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Houze (2014)

Gradient Balance

So far we have 
focused on this 
side of the 
picture
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Carnot Engine

Consider a cyclical process involving an 
ideal gas.


The cycle goes through four steps, as 
outlined in the diagram on the right. 


Essentially, you input heat at a high 
temperature and the system does work in 
proportion to the amount of input heat. 

Carnot Engine

94 Atmospheric Thermodynamics

Carnot’s cycle consists of taking the working sub-
stance in the cylinder through the following four
operations that together constitute a reversible, cyclic
transformation:

i. The substance starts with temperature T2 at a
condition represented by A on the p–V diagram
in Fig. 3.20. The cylinder is placed on the stand
S and the working substance is compressed by
increasing the downward force applied to the
piston. Because heat can neither enter nor
leave the working substance in the cylinder
when it is on the stand, the working substance
undergoes an adiabatic compression to the
state represented by B in Fig. 3.20 in which its
temperature has risen to T1.

ii. The cylinder is now placed on the warm
reservoir H, from which it extracts a quantity of
heat Q1. During this process the working
substance expands isothermally at temperature
T1 to point C in Fig. 3.20. During this process
the working substance does work by expanding
against the force applied to the piston.

iii. The cylinder is returned to the nonconducting
stand and the working substance undergoes an
adiabatic expansion along book web site in
Fig. 3.20 until its temperature falls to T2.
Again the working substance does work
against the force applied to the piston.

iv. Finally, the cylinder is placed on the cold
reservoir and, by increasing the force applied
to the piston, the working substance is
compressed isothermally along DA back to its
original state A. In this transformation the
working substance gives up a quantity of heat
Q2 to the cold reservoir.

It follows from (3.36) that the net amount of work
done by the working substance during the Carnot
cycle is equal to the area contained within the figure
ABCD in Fig. 3.20. Also, because the working sub-
stance is returned to its original state, the net work
done is equal to Q1 ! Q2 and the efficiency of the
engine is given by (3.78). In this cyclic operation the
engine has done work by transferring a certain quan-
tity of heat from a warmer (H) to a cooler (C) body.
One way of stating the second law of thermodynam-
ics is “only by transferring heat from a warmer to a
colder body can heat be converted into work in a
cyclic process.” In Exercise 3.56 we prove that no
engine can be more efficient than a reversible engine
working between the same limits of temperature, and
that all reversible engines working between the same
temperature limits have the same efficiency. The valid-
ity of these two statements, which are known as
Carnot’s theorems, depends on the truth of the sec-
ond law of thermodynamics.

Exercise 3.15 Show that in a Carnot cycle the
ratio of the heat Q1 absorbed from the warm reser-
voir at temperature T1 K to the heat Q2 rejected
to the cold reservoir at temperature T2 K is equal
to T1!T2.

Solution: To prove this important relationship we
let the substance in the Carnot engine be 1 mol of an
ideal gas and we take it through the Carnot cycle
ABCD shown in Fig. 3.20.

For the adiabatic transformation of the ideal gas
from A to B we have (using the adiabatic equation
that the reader is invited to prove in Exercise 3.33)

where " is the ratio of the specific heat at constant
pressure to the specific heat at constant volume. For
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Fig. 3.19 The components of Carnot’s ideal heat engine.
Red-shaded areas indicate insulating material, and white
areas represent thermally conducting material. The working
substance is indicated by the blue dots inside the cylinder.
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Fig. 3.20 Representations of a Carnot cycle on a p–V dia-
gram. Red lines are isotherms, and orange lines are adiabats.
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Carnot Engine

Carnot Engine
The first law (internal energy form) 
integrated over this cycle takes the form:

∮ CvdT = ∮ δQ − ∮ δW

Because state variable don’t change during 
a closed loop integral, it follows that

∮ δQ = ∮ δW
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Carnot Engine

Carnot Engine
Writing these in exact derivative form we 
have

∮ Tds = ∮ pdα ≠ 0

Now let’s consider a cycle divided into 4 
steps:

1. Isothermal compression at a cooler T1

2. Adiabatic compression to T2

3. Isothermal expansion at T2

4. Adiabatic expansion back to T1

AB

C DT

T

Step 

Step 1

Step 3

St
ep

 4

St
ep

 2
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AB

C D

Carnot Engine
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By expanding the integral into the four 
components of the cycle we find that

W = ∮ pdα = qin − qout = εT1(sin − sout)

ε =
Work done

Heat absorbed
=

T2 − T1

T2

Is the Carnot Efficiency 

Carnot Engine

AB
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We can interpret the TC as a 
Carnot engine but using 
moist entropy instead of dry 
entropy. 

The mature TC as a Carnot Engine

sm = Cp ln θe + const
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The mature TC as a Carnot Engine
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Houze (2014)

Relation between primary and secondary circulation
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It is convenient to write the TC’s 
tangential circulation in terms of 
“absolute angular momentum”





So that the thermal wind equation 
becomes:


M = vr +
1
2

fr2

∂M2

∂p
= −

Rdr3

p
∂T
∂r

= − r3 ∂α
∂r

Houze (2014)

Thermal Wind
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Using Maxwell’s relation we write the thermal wind 
as:





Let’s assume that angular momentum surfaces are 
congruent with moist entropy surfaces, i.e. M(sm). 
The radius of the eyewall is assumed to be a function 
of pressure: 





Note: the sloping angular momentum and moist entropy 
surfaces are the reason we see the stadium effect. 

∂M2

∂p
= − r3 ( ∂T

∂p )
sm

( ∂sm

∂r )
p

2M
r3 ( ∂r

∂p )
M

= ( ∂T
∂p )

M
( ∂sm

∂M )
M

Thermal Wind in the TC eyewall 
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Assuming that they TC eyewall is in cyclostrophic balance, then we can solve the equation 
for the radius to obtain the “maximum potential intensity”



v2
max =

Ch

Cd

Ts − To

To
(h*s − ha)

Maximum potential intensity



16

Assuming that the temperature difference between 
the air and the ocean is small, the formula can be 
simplified to





If the boundary-layer RH is similar everywhere 
(observations support this), then the temperature of 
the sea surface predominantly determines the 
maximum intensity of a TC. 


What would happen to the MPI if the TC suddenly 
upwelled cold water?

v2
max =

Ch

Cd

Ts − To

To
Lvq*s (1 − RH)

Maximum potential intensity (MPI)
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MPI climatology
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It’s been fun lecturing you


