WTG breakdown in TCS

$$
\begin{aligned}
& \frac{\partial \xi}{\partial t}=-\nabla_{n} \cdot\left(\vec{v} \xi_{0}-\omega_{w} \hat{k} \times \frac{\partial \vec{v}}{\partial p}+\hat{k} \times \overrightarrow{F_{r}}\right) \\
& \frac{\partial S_{w}}{\partial t}=-\nabla_{n} \cdot\left(\vec{v} \delta_{w}+\omega_{w} \frac{\partial \vec{v}}{\partial p}+\overrightarrow{F_{r}}\right)-2
\end{aligned}
$$ WTO bort.

Assume that the entire TC io enclosed in a circle of radius r \times We can average the area of the circle to know how the T evolves. Let's assume weak vertical shear, and that we follow the mean flow

$$
\begin{aligned}
& \frac{1}{2 \pi R} \int_{\theta} \int_{r} \frac{\partial z}{\partial t} d r d \theta \quad \xi=\hat{k} \cdot(\nabla \times \vec{v}) \\
& \frac{1}{2 \pi R} \int_{\partial}^{r} \int_{r} \frac{\partial}{\partial t}(\hat{k} \cdot(\nabla \times \vec{v})) d r d \theta \\
& \frac{1}{2 \pi R} \frac{\partial}{\partial t} \int_{\theta V_{r}} \int_{r}(\hat{k} \cdot \nabla \times \vec{v}) d r d \theta
\end{aligned}
$$

Stokes theorem says that

$$
\begin{aligned}
\int_{\theta} \int_{r} \hat{k} \cdot(\nabla \times \vec{v}) d r d \theta & =\oint_{\theta} \vec{v} \cdot d \vec{l} \\
& =\oint_{\theta} v d l=\int_{0}^{2 \pi} v R d \theta \\
\frac{1}{2 \pi R} \int_{\theta} \int_{r} \frac{\partial z}{\partial t} d r d \theta & =\left.\frac{\partial v_{1}}{\partial t}\right|_{R}
\end{aligned}
$$

We can apply the divergence theorem on the ohs, and rinse and repeal for div equation (note: δ uses divergence theorem)

