From the U, you obtain a cet of equations for
TD-like waves.
27. - u 27. + folv (2)
27. - u 27. + folv (2)
27. - u 27. - v/ 2/2)
4. - u 20. - v/ 2/2)
Mean that winds (2) min
advect moisture wastward.
Mean that worker stretching
Dt = Dt + u 2
STe
Dh 2i = Folv (2) worker alv of mean moisture by
aron mentional winds
det's follow Sobel et al. (2001) and accame that

$$v = -\overline{u}kh$$
 depler $1 < 1$ Why?
tog the swift open $1 < 1$ Why?

When
$$w = \overline{u}_{k} \langle x \langle x \rangle$$
 the hor winds are
predominantly non-divergent.
 $v' \cong \frac{\partial V}{\partial x}$ streamfunction $\overline{z}' = \overline{v}_{h}^{2} \psi$
Replacing with ψ :
Duble's Folly 422 We have two cons. with
 $\overline{Dt} = \overline{Folly} 422$ We have two cons. with
 $\overline{Dt} = \overline{Folly} 422$ We have two cons. with
 $\overline{Dt} = \overline{Folly} 422$ We have two cons. with
 $\overline{Dt} = \overline{Folly} 422$ We have two cons. with
 $\overline{Dt} = \overline{\partial x} \overline{\partial y}$
Assuming that $\overline{u}_{x}, \frac{\partial \overline{w}}{\partial y}$, fo, S, and To are
 $\overline{\partial y}$
constants, then occurtions to the pairs of egro. takes
the form:
 $\Psi(x, y, t) = W \exp(ikx + ily - iwt)$
 $dets$ define $w^{z} = w - \overline{u}_{ik}$ as the doppler-shifted
 \overline{Freg} .
 $\overline{T_{n}^{a}} \Psi' = -(k^{z} + l^{z}) \Psi' \qquad \overline{\partial Y}' = ik \Psi$
 $\overline{Dt} = -iw^{x}$
 $\overline{Dt} = -iw^{x}$
 $\overline{Dt} = -iw^{x}$ We have removed
the derivatives,
 $-iw^{x}(2^{x})^{z} = -ik\Psi \frac{\partial 2^{y}}{\partial x}$ we have removed
 $\overline{Tr} = -iw^{x} \frac{\partial 2^{y}}{\partial x} = -ik\Psi$ we have removed
 $\overline{Tr} = -iw^{x} \frac{\partial 2^{y}}{\partial x} = -ik\Psi \frac{\partial 2^{y}}{\partial x}$ and the resulting ogs.
 $\overline{Tr} = -ik\Psi \frac{\partial 2^{y}}{\partial y}$ are solved by substitution

By doing that you obtain the dispension:

$$w = \overline{u_{k}} k \pm \sqrt{\frac{185}{K^{2}}} k K^{2} = k^{2} + \ell^{2}$$
Telepension volation

$$w = w_{c} + i w_{i} \qquad w_{r} > 0 \text{ eastward}$$
Telepension volation

$$w_{r} = w_{c} + i w_{i} \qquad w_{r} > 0 \text{ eastward}$$

$$w_{r} < 0 \text{ westward}$$

$$w_{r} < 0 \text{ decay}$$

$$w_{i} < 0 \text{ westward}$$

$$w_{r} < \frac{1}{12} + \frac{1}{12}$$

$$w_{r} = \frac{1}$$

