AOS 801: Advanced Tropical Meteorology Lecture 21 Spring 2023 Instabilities under WTG balance

Ángel F. Adames Corraliza angel.adamescorraliza@wisc.edu

HW4/PA4 is due Tuesday. It already accounts for slight delay in previous HW.

Please choose your time and topic for the final presentation by the end of the week.

https://docs.google.com/spreadsheets/d/1qCP6THaTomq1jVlla6XUvFDtPnNHQUhCtG2zq1flVk/edit?usp=sharing

Paper discussion

What TD-like waves is this plot showing? Discuss the different terms in the budget.

Synthesize everything. Based on the results, what is this schematic telling us?

Let's wrap up our discussion on moisture modes

The growth of moisture modes.

The mechanism of growth can be understood as a variance budget $\rangle' - \left\langle \omega_w \frac{\partial MSE}{\partial p} \right\rangle' + \langle Q'_r \rangle + L_v E' + SHF' \right)$

$$\frac{\partial L_{v} \langle q' \rangle^{2}}{\partial t} = - \langle q' \rangle \bigg(\langle \mathbf{v} \cdot \nabla_{h} L_{v} q \rangle$$

For a process to contribute to the growth of moisture anomalies, it must occur in phase with the moisture anomalies.

$$\frac{\partial L_{v} \langle q' \rangle^{2}}{\partial t} > 0 \text{ growth}$$
$$\frac{\partial L_{v} \langle q' \rangle^{2}}{\partial t} < 0 \text{ decay}$$

The growth of moisture modes.

The mechanism of growth can be understood as a variance budget

 $\frac{\partial L_{v} \langle q' \rangle^{2}}{\partial t} = - \langle q' \rangle \bigg(\langle \mathbf{v} \cdot \nabla_{h} L_{v} q \rangle' -$

In PA4 we see that there are two dominant processes that lead to growth.

$$-\left\langle \omega_{w} \frac{\partial MSE}{\partial p} \right\rangle' + \left\langle Q_{r}' \right\rangle + L_{v}E' + SHF' \right)$$

7

The growth of moisture modes.

The mechanism of growth can be understood as a variance budget

 $\frac{1}{2} \frac{\partial L_{v} \langle q' \rangle^{2}}{\partial t} = - \langle q' \rangle \bigg(\langle \mathbf{v} \cdot \nabla_{h} L_{v} q \rangle'$

In PA4 we see that there are three processes that lead to mode decay

$$' - \left\langle \omega_w \frac{\partial MSE}{\partial p} \right\rangle' + \left\langle Q'_r \right\rangle + L_v E' + SHF' \right)$$

gradient:

 $= \frac{\omega \partial_p MSE - D}{\nabla_h \cdot \langle vDSE \rangle}$ is the effective gross moist stability. Let's assume it's a constant

Inoue et al. (2021)

300

600

Importance of radiation

Where Let's assume it's a complex constant and that clear sky radiation cancels the surface fluxes (HW3/PA3), so that $\Gamma_{\rho} = \Gamma - r(1 - \Gamma).$

With several assumptions and approximations $\frac{\Gamma_e P}{\partial t} \simeq -\frac{\Gamma_e P}{\partial t}$

Which we can solve to obtain

$$P' = P_0 \exp\left(-\frac{\Gamma_e}{\tau_c}t\right)$$

The solution could be oscillating in time if Γ_{ρ} has an imaginary component, but can grow or decay if it has real component. Let's focus on the latter.

Inoue et al. (2021)

Importance of radiation

$$P' = P_0 \exp\left(-\frac{\Gamma_e}{\tau_c}\right)$$

$\Gamma_{\rho} = \Gamma - r(1 - \Gamma)$

If $r(1 - \Gamma) > \Gamma$ then Γ_{ρ} is negative and the solution grows. This mechanism has many names, from "moisture mode instability" to "radiative-convective instability". The important part is that is purely due to column processes that involve convection and its feedbacks alone.

11