Motion under WTG balance

$$
\begin{array}{r}
\frac{\partial \delta_{w}}{\partial t}=-\nabla_{h} \cdot \underset{\Gamma}{(\vec{v} \delta w}+\underset{w}{\left.\omega_{w} \frac{\partial \vec{v}}{\partial p}\right)-\Sigma} \\
\text { hor. flux of } \quad \text { vertical }
\end{array}
$$

WTG divergence mom. adv. convergence

Imagine a parcel with mass M
Bet has the following properties

$$
z, \delta, \vec{v}, \varepsilon, \text { etc. }
$$

Now Z and δ are properties of a parcel.

* Imagine that the parcel has an attire δ an \sum like a water bottle and shampoo.

Let's write the δ and ξ_{c} egno. in the form of forcing

$$
\begin{aligned}
& \text { (1) } \frac{\partial \varepsilon_{0}}{\partial t}=-\nabla_{n} \cdot \vec{Z} \\
& \text { (2) } \frac{\partial S}{\partial t}=T_{n} \cdot \vec{D}
\end{aligned}
$$

$$
\vec{Z}=\vec{v} \xi_{a}-\omega_{w} \hat{k} \times \frac{\partial \vec{v}}{\partial p}
$$

$$
\begin{aligned}
& \vec{D}=-\Pi_{h}(\Phi+K E)-\overrightarrow{n_{a}} \times \vec{v} \\
& K E=\frac{1}{2}\left(u^{2}+v^{2}\right) \\
& \eta_{a}=\frac{\partial v}{\partial P} \hat{\imath}-\frac{\partial u}{\partial P} \hat{j}+z_{a} \hat{k}
\end{aligned}
$$

Let's integrate over an area A and invoke the div

$$
\begin{aligned}
& \iint \frac{\partial z_{n}}{\partial t} d A=-\iint \nabla_{n} \cdot \vec{Z} d A \\
&=-\oint \vec{Z} d l \\
& \iint \frac{\partial \delta_{w}}{\partial t} d A=\oint \vec{D} d l \\
& \frac{\partial\left[z_{0}\right.}{\partial t}=-\oint \vec{Z} d l \quad \frac{\partial[\delta]}{\partial t}=\oint \vec{D} d l
\end{aligned}
$$ theorem:

