AOS 801: Advanced Tropical Meteorology Lecture 14 Spring 2023 Tropical Dynamics under WTG balance 2: Consequences

Ángel F. Adames Corraliza angel.adamescorraliza@wisc.edu

HW3 and PA3 are up, they're due in two weeks.

Paper discussion next Monday.

Remember?

Total Precipitable Water 2023-02-09 1600 UTC

Post spring break recap

assume systems that are in WTG balance must evolve slowly.

But **how slowly**? We must invoke scale analysis to find out!

$\omega \frac{\partial \text{DSE}}{\partial p} = Q_1$

Given that there's an adjustment process associated with gravity waves, we must

WTG adjustment timescale

In the case of fixed heating, WTG is attained when the gravity waves exit the region of interest.

This is known as the gravity wave adjustment timescale

- L = domain size
- c = gravity wave phase speed

5

Conditions for WTG balance

From examination of the non-dimensional thermodynamic equation we see that $N_w \ll 1$ for WTG balance to be valid:

 $N_w = max$

Condition 1: The system must evolve much more slowly than free gravity waves.

Condition 2: The meridional scale of the system must be smaller than the Rossby radius of deformation.

What do these mean physically?

$$\left(\frac{c_p^2}{c^2}, \frac{L_y^2}{L_d^2}\right) \ll 1$$

We can use the definition of gravity wave adjustment timescale

Condition 1: The system must evolve much more slowly than free gravity waves.

of deformation.

What do these mean physically?

- $N_w = \tau_g^2 \max(\tau^{-2}, f^2) \ll 1$
- Condition 2: The meridional scale of the system must be smaller than the Rossby radius

Systems in WTG balance

In PA3, you will see that in systems that obey WTG balance:

 $Ro_{\tau} =$

So that the terms in parenthesis in Nw are similar, so either can be used to understand the motions:

 $N_w =$

There is one exception which will be discussed in future lectures

$$=\frac{1}{f\tau}\sim 1$$

$$\tau_g^2 \tau^{-2} \ll 1$$

Basic equations

In order to understand when and why WTG is valid, we must scale the entire set of basic equations:

 $\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla_h) \mathbf{v} + \omega \frac{\partial \mathbf{v}}{\partial p} = -f\mathbf{k} \times \mathbf{v} - \nabla_h \Phi \qquad \text{Horizontal Momentum}$ $\frac{\partial \Phi}{\partial p} = -\frac{R_d T}{p}$ $\frac{\partial \omega}{\partial p} = -\nabla_h \cdot \mathbf{v}$ $\frac{\partial C_p T}{\partial t} + \mathbf{v} \cdot \nabla_h C_p T + \omega \frac{\partial \text{DSE}}{\partial p} = Q_1$ $\frac{\partial L_v q}{\partial t} + \mathbf{v} \cdot \nabla_h L_v q + \omega \frac{\partial L_v q}{\partial p} = -Q_2$

Hydrostatic

Mass Continuity

Thermodynamic

Moisture

The WTG circulation

Let us decompose the wind field into a from strict WTG balance.

This wind is not associated with any temperature anomalies. Thus it must be purely irrotational:

$$\frac{\partial \omega_w}{\partial p} = -\delta_w = -\nabla_h^2 \chi_w.$$

 χ_w is the WTG velocity potential

Let us decompose the wind field into a strict WTG component and a deviation

$\mathbf{u} = u\mathbf{i} + v\mathbf{j} + \omega\mathbf{k}$

$\mathbf{u}_{w} \cdot \nabla \mathrm{DSE} \equiv Q_{1}$

$$\mathbf{v}_w = \nabla_h \chi_w$$

Velocity potential

05 MAR 2023

Degrees K

11

The integrated velocity potential

Let us define the integrated velocity potential:

$$X_w(x, y, p, t) \equiv$$

A definition that we can use to redefine the WTG circulation as:

$$\left(\frac{\partial \text{DSE}}{\partial x}\frac{\partial^2}{\partial x\partial p} + \frac{\partial \text{DSE}}{\partial y}\frac{\partial^2}{\partial y\partial p} - S_p \nabla_h^2\right) X_w = -Q_1 \qquad S_p = -\frac{\partial \text{DSE}}{\partial p}$$

If the horizontal DSE gradient is weak we obtain the following

 $S_p \nabla$

$$\int_0^p \chi_w(x, y, p', t) \mathrm{d}p'.$$

$$V_h^2 X_w = Q_1$$

The strict WTG circulation

Why bother to define WTG balance this way?

$S_p \nabla_h^2 X_w = Q_1$

Because all components of the WTG wind field can be understood in terms of the WTG circulation.

13

The deviation from WTG balance can then be defined using potential vorticity

$$\mathrm{PV} \simeq g\zeta S_p$$

However, WTG balance implies that the evolution of PV is determined by the evolution of vorticity.

$$\frac{\partial \mathrm{PV}}{\partial t} \simeq g S_p \frac{\partial \zeta}{\partial t}$$

Annual mean

WTG deviation

Why are deviations from strict WTG balance non-divergent?

$$\mathbf{v}' \simeq \mathbf{k} \times \nabla_h \psi'$$

Balanced non-divergent circulations require pressure gradients to exist.

If the circulation is associated with heating, then a temperature anomaly must also exist: a deviation from strict WTG balance.

WTG PV equation

The WTG vorticity equation is:

Horizontal absolute vorticity flux

Note that the term on the rhs can be interpreted as a horizontal flux

Note that the term on the rhs can be interpreted as a horizontal flux

$$\mathbf{v}\zeta_a - \omega_w \mathbf{k} \times \frac{\partial \mathbf{v}}{\partial p}$$

"Tilting-like effect"

 $\frac{\partial \zeta}{\partial t} = -\nabla_h \cdot \mathbf{Z}_h$

WTG PV equation

You can only accrete vorticity within single pressure level

Consequence:

WTG balance does NOT allow ζ to be fluxed vertically.

$$\left(\mathbf{v}\zeta_a - \omega_w \mathbf{k} \times \frac{\partial \mathbf{v}}{\partial p}\right)$$

Convection under WTG balance

In L10 we found that:

$$L_{v}P = \frac{S_{p}L_{v}}{\mu_{c}^{*}m^{4}\Delta p} \ln\left(\frac{T_{fl}}{T_{lnb}}\right)\nabla_{h}^{2}\langle q\rangle - \langle Q_{r}\rangle$$

$$-\mathscr{O}\nabla_h^2\langle q\rangle = L_v P + \langle Q_r\rangle$$

Under WTG we chan show that moisture acts as a velocity potential, we have

$$\mathcal{O} \nabla_h^2 \langle q \rangle = \nabla_h^2 \langle X_w \rangle S_p$$

Bretherton, Peters, and Back (2004)

Buoyancy/Moisture as a velocity potential

In mesoscale regions iof precipitation, we can interpret buoyancy/moisture as a velocity potential that satisfies

$$\langle X_w \rangle = \frac{\mathcal{O}}{S_p} \langle q \rangle$$

So what happens when moisture becomes important ...