AOS 801: Advanced Tropical Meteorology Lecture 11 Spring 2023 Weak Temperature Gradient Balance

Ángel F. Adames Corraliza angel.adamescorraliza@wisc.edu

The gravity wave equation in isobaric coordinates

Combining the three equations yields the gravity wave equation

$$\frac{\partial}{\partial t} \left(\frac{\partial}{\partial p} \frac{1}{\sigma} \frac{\partial^2}{\partial t \partial p} \right) \Phi' = -\nabla_h^2 \Phi'.$$

Assuming a wave solution of the form:

Yields the following phase speed:

$$c = \frac{\varpi}{K} = \pm \frac{\sqrt{\sigma}}{m},$$

 $\Phi' = \hat{\Phi} \exp\left(ikx + ily + imp - i\varpi t\right)$

where
$$K^2 = k^2 + l^2$$

Think about the gravity waves

Dispersion:

$$c = \frac{\varpi}{K} = \pm \frac{\sqrt{\sigma}}{m},$$

where
$$K^2 = k^2$$

Think about the evolution of these waves from the perspective of the thermodynamic equation

$$\frac{\partial}{\partial t} \left(\frac{\partial \Phi'}{\partial p} \right) = -\omega \sigma$$

What determines the gravity wave speed?

The phase speed is :

$$c = \pm \frac{\sqrt{\sigma}}{m}$$

Plugging realistic numbers onto c yields a value of 50 m/s for the first baroclinic mode.

50 m/s = 112 mph, you can't outdrive this wave.

A region of strong convection has a lot of latent heat release from condensation, warming up the cloud. Geopotential increases in the upper troposphere and decreases in the lower troposphere to adjust to hydrostatic balance.

$$\omega \frac{\partial \text{DSE}}{\partial p} = Q_1$$

$DSE = C_p T + \Phi$

Gravity waves develop from the convection and "smooth out" the geopotential/ temperature anomalies. A secondary circulation develops from the gravity waves, which adds further upward motion to the convection, cooling the cloud.

$$\omega \frac{\partial \text{DSE}}{\partial p} = Q_1$$

 $DSE = C_p T + \Phi$

This process redistributes entropy (warm air has higher entropy)

Let's return to the equations that gave us gravity waves and add a heat source Q (i.e. a mass source). For simplicity, let's consider one dimension:

 $\frac{\partial \Phi'}{\partial t} + \frac{\partial \Phi'}{\partial t}$

Where we have now defined the gravity wave phase speed c a priori. The equations combine to yield:

 ∂t^2

 $\frac{\partial u'}{\partial t} = -\frac{\partial \Phi'}{\partial x}$

$$-c^2 \frac{\partial u'}{\partial x} = Q$$

$$c^2 \frac{\partial^2 \Phi'}{\partial x^2} = \frac{\partial \mathcal{Q}}{\partial t}$$

equation

 $\frac{\partial^2 \Phi'}{\partial t^2} - c$

Where we can break down the heating into

Where H is the Heaviside step function.

The two equations can be combined to form the forced (inhomogeneous) wave

$$c^2 \frac{\partial^2 \Phi'}{\partial x^2} = \frac{\partial Q}{\partial t}$$

Q = F(x)H(t)

written as:

$$\Phi'(x,t) = \frac{1}{2c} \int_{0}^{t}$$

Where $\delta(t')$ is the Dirac delta function.

Note that x' and t' are different from x and t.

The forced wave equation has a solution in the form of a Green's function, which can be

 $\int_0^t \int_{x-ct}^{x+ct} F(x')\delta(t')dx'dt'$

10

$$\Phi'(x,t) = \frac{1}{2c} \int_0^t \int_{x-ct}^{x+ct} F(x')\delta(t')dx'dt'$$

The solution shows gravity waves propagating away from the heat source, warming the column adiabatically as they propagate at a phase speed c.

11

In analogy to geostrophic balance, we can define a WTG and a non-WTG vertical velocity

$$\omega = \omega_w + \omega'$$

The "cloud" (Q) reaches balance very quickly!

Blue: adiabatic subsidence

Red: WTG ascent

Blue: adiabatic subsidence Red: Diabatic ascent

2-D Forced wave equation

$$\frac{\partial^2 \Phi'}{\partial t^2} - c^2 \nabla_h^2 \Phi' = \frac{\partial \hat{Q}}{\partial t}$$

The solution shows gravity waves propagating away from the heat source, warming the column as they propagate at the phase speed c.

Contoured: vertical velocity (w)

2-D Forced wave equation

$$\frac{\partial^2 \Phi'}{\partial t^2} - c^2 \nabla_h^2 \Phi' = \frac{\partial \mathcal{Q}}{\partial t}$$

The solution shows gravity waves propagating away from the heat source, warming the column as they propagate at the phase speed c.

2-D Forced wave equation

This process is clearly seen in composites based on ERA5 data.

In this instant the gravity waves follow a phase speed of the first barclinic mode, which is roughly 50 m/s.

In real life

In real life

Subsidence front

When is WTG balance valid?

Given that there's an adjustment process associated with gravity waves, we must assume systems that are in WTG balance must evolve slowly.

But **how slowly**? We must invoke scale analysis to find out!

$\omega \frac{\partial \text{DSE}}{\partial p} = Q_1$

Basic equations

In order to understand when and why WTG is valid, we must scale the entire set of basic equations:

 $\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla_h) \mathbf{v} + \omega \frac{\partial \mathbf{v}}{\partial p} = -f\mathbf{k} \times \mathbf{v} - \nabla_h \Phi \qquad \text{Horizontal Momentum}$ $\frac{\partial \Phi}{\partial p} = -\frac{R_d T}{p}$ $\frac{\partial \omega}{\partial p} = -\nabla_h \cdot \mathbf{v}$ $\frac{\partial C_p T}{\partial t} + \mathbf{v} \cdot \nabla_h C_p T + \omega \frac{\partial \text{DSE}}{\partial p} = Q_1$ $\frac{\partial L_v q}{\partial t} + \mathbf{v} \cdot \nabla_h L_v q + \omega \frac{\partial L_v q}{\partial p} = -Q_2$

Hydrostatic

Mass Continuity

Thermodynamic

Moisture

The WTG circulation

from strict WTG balance.

$$\mathbf{u} = \mathbf{u}_w + \mathbf{u}'$$

This wind is not associated with any temperature anomalies. Thus it must be purely irrotational

$$\frac{\partial \omega_w}{\partial p} = -\delta_w = -\nabla_h^2 \chi_w.$$

 χ_w is the WTG velocity potential

Let us decompose the wind field into a strict WTG component and a deviation

$\mathbf{u} = u\mathbf{i} + v\mathbf{j} + \omega\mathbf{k}$

$\mathbf{u}_{w} \cdot \nabla \text{DSE} \equiv Q_{1}$

$$\mathbf{v}_w = \nabla_h \chi_w$$

Velocity potential

05 MAR 2023

Degrees K

WTG deviation

The deviation from WTG balance is defined as

$\mathbf{u} = \mathbf{u}_w + \mathbf{u}'$

Note that the non-divergent component of the wind field is due to deviations from strict WTG balance.

$\mathbf{u} = u\mathbf{i} + v\mathbf{j} + \omega\mathbf{k}$

 $\mathbf{v}' = \mathbf{k} \times \nabla_h \psi' + \nabla_h \chi'$