Snowity waves:

$$
\frac{\partial \vec{v}^{\prime \prime}}{\partial t}=-\nabla_{n} \Phi^{\prime}(1) \frac{\partial}{\partial t}\left(\frac{\partial \Phi^{\prime}}{\partial P}\right)=-\omega^{\prime} \theta \text { Thermo }
$$

$$
\nabla_{n} \cdot \vec{v}=-\frac{\partial w}{\partial p}(2) \quad \frac{\partial \Phi^{\prime}}{\partial P}=-\frac{R_{d} I^{\prime}}{P} \quad \sigma=\frac{R_{d} \delta p}{P C_{p}}
$$ param

Wow can we combine these oguations into one like. Taking $\nabla_{n} .(1)$ yields

$$
\frac{\partial \delta}{\partial t}=-\nabla_{n}^{2} \Phi \quad \frac{D_{i v}}{\varepsilon_{q n} .} \quad \delta=-\frac{\partial \omega}{\partial p}
$$

$-\frac{\partial^{2} w}{\partial t \partial p}=-\nabla_{n}^{2} \Phi$ (4)
Letio take $\partial^{2} / \partial t \partial p$ of Eq. (3)

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial p \partial t} \frac{\partial}{\partial t}\left(\frac{\partial \Phi^{\prime}}{\partial p}\right)=-\sigma \frac{\partial^{2} \omega^{\prime}}{\partial p \partial t}=\sigma V_{n}^{2} \Phi \\
& \frac{\partial^{y} \Phi^{\prime}}{\partial p^{2} \partial t^{2}}=-\sigma \nabla_{n}^{2} \Phi \text { "Savage! -HC }
\end{aligned}
$$

Let's aooume σ is a conotant.

$$
\Phi=\Phi \exp (i k x+i b y+i m p-i \omega t)
$$

$\frac{\partial^{2} \phi}{\partial p^{2}}=-m^{2} \Phi$ (recall antitriptic balance closo)

$$
\begin{array}{cc}
\left(-m^{2}\right)\left(-\omega^{2}\right) \Phi=-\sigma\left(-k^{2}-l^{2}\right) \nsubseteq & k^{2}=k^{2}+e^{2} \\
m^{2} \omega^{2}=k^{2} & m=\frac{k \sqrt{\sigma}}{m} \\
\omega=\frac{\omega}{1 K}=\frac{\sqrt{\sigma}}{m}=50 \\
\text { gravity wase phoose } \\
\text { opeed }
\end{array}
$$

