

This gualitative picture implies that convective
updrafts and downdrafts can act as a diffusion
so that our mome anow can be written as:
$$\overrightarrow{Dt} = \overrightarrow{T} \overrightarrow{Dp} - \overrightarrow{St} \times \overrightarrow{v} + \overrightarrow{P} \overrightarrow{Dz}$$
 Can we
$$\overrightarrow{Dt} = \overrightarrow{T} \overrightarrow{Dp} + \overrightarrow{B} + \overrightarrow{P} \overrightarrow{Dz}$$
 Can we
$$\overrightarrow{Dt} = \overrightarrow{P} \overrightarrow{Dz} + \overrightarrow{B} + \overrightarrow{P} \overrightarrow{Dz}$$
 Can we
$$\overrightarrow{Dt} = \overrightarrow{P} \overrightarrow{Dz} + \overrightarrow{B} + \overrightarrow{P} \overrightarrow{Dz}$$
 Can we
$$\overrightarrow{Dt} = \overrightarrow{P} \overrightarrow{Dz} + \overrightarrow{B} + \overrightarrow{P} \overrightarrow{Dz}$$

(an we simplify?)
$$\overrightarrow{Lt} = \overrightarrow{P} \overrightarrow{Dz} + \overrightarrow{B} + \overrightarrow{P} \overrightarrow{Dz}$$

(an intersional entry is:
$$(\overrightarrow{x}, \overrightarrow{y}) = \overrightarrow{U} (\overrightarrow{x}, \overrightarrow{y})$$
 $z = H\overrightarrow{z}$ $t = \underline{L} f$
dimensional entry in dim.
$$(\overrightarrow{u}, \overrightarrow{v}) = U(\overrightarrow{u}, \overrightarrow{v})$$
 $\overrightarrow{vz} = W \overrightarrow{w}$
Let's assume that p' is part of the leading-order
bolance
 $U^2 \overrightarrow{Dv} = -X \overrightarrow{Th} \overrightarrow{P} - fU f \overrightarrow{E} \times \overrightarrow{v} - \underbrace{M} \overrightarrow{U} \overrightarrow{Dz}^2$
In GFD classes, we usually non-dim this gen.
by dividing by FU, and chield gives you the Possby
number.
Nowever, for the case of an MCS we divide by
the cost term instead.
$$\overrightarrow{P} = \underbrace{M_{clU}} \overrightarrow{P}' = \overrightarrow{Ro} = \underbrace{V} = \overrightarrow{Rossby}$$

$$fl = \underbrace{M_{clU}} \overrightarrow{P}' = \overrightarrow{Ro} = \underbrace{V} = \overrightarrow{Rossby}$$

Rec =
$$\int W/H$$
 Convective
Mc Reynolds number
By using the dame method:
Rec $H^2 DW = \frac{-2P'}{22} + \frac{B}{2} + \frac{H}{2} \frac{2^{2}W}{2^{2}} - \frac{2P'}{22} + \frac{B}{2} + \frac{H}{2} \frac{2^{2}W}{2^{2}} - \frac{2^{2}}{10^{2}} + \frac{B}{2} + \frac{H}{2} \frac{2^{2}W}{2^{2}} + \frac{2^{2}W}{2^{2}$