AOS 801: Advanced Tropical Meteorology

 Lecture 2 Spring 2023Review of Dynamics and Thermodynamics

Ángel F. Adames Corraliza angel.adamescorraliza@wisc.edu

Homogeneous temperatures

Lots of water vapor

Total Precipitable Water 2022-01-26 2000 UTC

Momentum Equations in Spherical Coordinates

$$
\begin{aligned}
& \frac{D u}{D t}-\frac{u v \tan \phi}{a}+\frac{u w}{a}=-\frac{1}{\rho a \cos \phi} \frac{\partial p}{\partial \lambda}+2 \Omega v \sin \phi+2 \Omega w \cos \phi+F_{r x} \\
& \frac{D v}{D t}+\frac{u^{2} \tan \phi}{a}+\frac{u v}{a}=-\frac{1}{\rho a} \frac{\partial p}{\partial \phi}-2 \Omega u \sin \phi+F_{r y} \\
& \frac{D w}{D t}-\frac{u^{2}+v^{2}}{a}=-\frac{1}{\rho} \frac{\partial p}{\partial z}-g+2 \Omega u \cos \phi+F_{r z}
\end{aligned}
$$

Momentum Equations in Spherical Coordinates

A qualitative scale analysis will quickly reveal that the metric terms, the "non-traditional" Coriolis terms, and the molecular friction are negligibly small.

$$
\begin{aligned}
& \frac{D u}{D t}-\frac{u v}{a}+\frac{\phi}{c}=-\frac{1}{\rho a \cos \phi} \frac{\partial p}{\partial \lambda}+2 \Omega v \sin \phi+2 \Omega n \operatorname{os} \phi+ \\
& \frac{D v}{D t}+\frac{u^{2}}{a}+\frac{1}{a}+-\frac{1}{\rho a} \frac{\partial p}{\partial \phi}-2 \Omega u \sin \phi+ \\
& \frac{D w}{D t}-\frac{u}{a}=-\frac{1}{\rho} \frac{\partial p}{\partial z}-g+2 \Omega \cdot \cos \phi+
\end{aligned}
$$

Momentum Equations: Tangent Plane Approximation

The resulting system of equations are equivalent to analyzing them on a "tangent plane".

Scalar form
$\frac{D u}{D t}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+f v$
Vector form
$\frac{D \mathbf{u}}{D t}=-\frac{1}{\rho} \nabla p-g \mathbf{k}-f \mathbf{k} \times \mathbf{v}$
$\mathbf{u}=u \mathbf{i}+v \mathbf{j}+w \mathbf{k}$
$\frac{D w}{D t}=-\frac{1}{\rho} \frac{\partial p}{\partial z}-g$

Primitive equations for an ideal gas

Momentum $\quad \frac{D \mathbf{u}}{D t}=-\frac{1}{\rho} \nabla p-g \mathbf{k}-f \mathbf{k} \times \mathbf{v}$
Mass Continuity $\frac{D \rho}{D t}=-\rho \nabla \cdot \mathbf{u}$

Thermodynamic $\quad C_{p} \frac{D T}{D t}-\alpha \frac{D p}{D t}=Q$

Gas State

$$
p=\rho R_{a} T \quad p \alpha=R_{a} T
$$

Primitive Equations: Pressure Coordinates

Momentum

$$
\frac{D \mathbf{v}}{D t}=-\nabla_{h} \Phi-f \mathbf{k} \times \mathbf{v} \quad \frac{\partial \Phi}{\partial p}=-\alpha
$$

Mass Continuity $\quad \frac{\partial \omega}{\partial p}=-\nabla_{h} \cdot \mathbf{v}$

Thermodynamic $\quad C_{p} \frac{D T}{D t}-\omega \alpha=Q$

Gas State

$$
p \alpha=R_{a} T
$$

Thermodynamic equation in a hydrostatic atmosphere

A particularly useful form of the thermodynamic budget can be obtained if we apply hydrostatic balance:

$$
C_{p} \frac{D T}{D t}-\omega \alpha=Q
$$

$$
\frac{\partial \Phi}{\partial p}=-\alpha
$$

Using hydrostatic balance to remove the specific volume yields:

$$
C_{p} \frac{\partial T}{\partial t}+\mathbf{v} \cdot \nabla_{h} C_{p} T+\omega \frac{\partial \mathrm{DSE}}{\partial p}=Q
$$

Where DSE $=C_{p} T+\Phi$ is the dry static energy, a measure of entropy in a hydrostatic atmosphere.

But wait!!

$$
C_{p} \frac{D T}{D t}-\omega \alpha=Q
$$

In a dry atmosphere the primitive equations are enough to describe the evolution of systems.

But we have diabatic heating here...

都

Butwe have diabaticheating here...

But wait!!

 \[Q=Q_{c}+Q_{r}
\]
 \section*{$Q=Q_{c}+Q_{r}$}
 \section*{$Q=Q_{c}+Q_{r}$}

In most of your dynamics classes we ignore convection and radiation. In the tropics these are the primary drivers of the circulation.

Convection Q_{c}

What do we need to understand convection?

Water vapor

Water vapor is roughly an ideal gas. It follows Dalton's law of partial pressures (the total pressure is the sum of the pressure of all the constituent gases).

$$
e \alpha_{v}=R_{v} T
$$

The mixing ratio is the amount of water vapor mass per unit of dry air

$$
r_{v}=\frac{m_{v}}{m_{d}}
$$

The specific humidity is the amount of water vapor per unit of total air mass.

$$
q_{v}=\frac{m_{v}}{m_{d}+m_{v}}=\varepsilon \frac{e}{p_{d}+e} \quad q_{v} \simeq r_{v}
$$

Saturation

The vapor pressure for equilibrium is known as the saturation vapor pressure e_{s}

$$
\mathrm{RH}=\frac{e}{e^{*}}
$$

If the RH is 100%, you have reached equilibrium. That is, the rate of evaporation to condensation is the same ${ }^{+}$

(b) Saturated

Wallace and Hobbs (2006)

Wallace and Hobbs (2006)
(+This only applies for flat surfaces of water. The

The Clausius-Clapeyron equation

Saturation vapor pressure is a function of temperature only in the atmosphere.

$$
\frac{1}{e^{*}} \frac{d e^{*}}{d T} \simeq \frac{L_{v}}{R_{v} T^{2}}
$$

Yields a solution of the form

$$
e^{*} \simeq e_{0}^{*} \exp \left(\frac{L_{v}}{R_{v}}\left[\frac{1}{T_{0}}-\frac{1}{T}\right]\right)
$$

A simplified version of the solution takes the
Wallace and Hobbs (2006) following form

$$
\begin{array}{ll}
\text { g torm } & A=2.53 \times 10^{9} h P a \\
e^{*}=A \exp \left(-\frac{B}{T}\right) & B=L_{v} / R_{v}=5.42 \times 10^{3} K
\end{array}
$$

The Clausius-Clapeyron equation

The Clausius-Clapeyron equation

Total Precipitable Water 2022-01-26 2000 UTC

Convection Q_{c}

To understand convection we must invoke the equation for conservation of moisture

$$
\frac{D q}{D t}=S_{q}
$$

$$
S_{q}=e-c+s-d-\frac{\partial F_{q}}{\partial p}
$$

e = evaporation

$$
\mathrm{c}=\text { condensation }
$$

s = sublimation

$$
d=\text { deposition }
$$

F_{q} Turbulent flux of moisture

Convection Q_{c}

$$
\begin{gathered}
\frac{D q}{D t}=S_{q} \\
S_{q}=e-c+s-d-\frac{\partial F_{q}}{\partial p}
\end{gathered}
$$

Includes only evaporation that happens within the parcel

Includes evaporation that occurs as a result of turbulent mixing with a
a resurt surface of water

